DNA residence time is a regulatory factor of transcription repression

نویسندگان

  • Karen Clauß
  • Achim P. Popp
  • Lena Schulze
  • Johannes Hettich
  • Matthias Reisser
  • Laura Escoter Torres
  • N. Henriette Uhlenhaut
  • J. Christof M. Gebhardt
چکیده

Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway.

Recent studies have suggested that the NF-Y transcription factor is involved in transcription repression of the cell cycle regulatory genes in a response to p53 induction or DNA damage. Here we demonstrate the cdk2-dependent phosphorylation of NF-Y and its involvement in transcription repression by the p53-p21 signaling pathway. Cdk2 phosphorylates two serine residues near the DNA-binding domai...

متن کامل

The strength of transcription-factor binding modulates co-variation in transcriptional networks.

An appreciable fraction of the transcriptome differs in level of expression among individuals. Transcription factor (TF) expression and DNA binding causes cell-specific activation and repression of downstream targets, and TF expression levels vary across individuals. However, it is not clear how the strength of DNA binding for individual TFs translates into regulatory control, or whether a diff...

متن کامل

Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression

Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression...

متن کامل

Self-consistent theory of transcriptional control in complex regulatory architectures

Individual regulatory proteins are typically charged with the simultaneous regulation of a battery of different genes. As a result, when one of these proteins is limiting, competitive effects have a significant impact on the transcriptional response of the regulated genes. Here we present a general framework for the analysis of any generic regulatory architecture that accounts for the competiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017